
Vol.:(0123456789)

Control Theory and Technology 
https://doi.org/10.1007/s11768-021-00052-0

1 3

RESEARCH ARTICLE

A characteristic modeling method of error‑free compression 
for nonlinear systems

Bin Meng1 · Yun‑Bo Zhao2 · Jing‑Jing Mu3

Received: 31 August 2020 / Revised: 30 January 2021 / Accepted: 7 February 2021 
© South China University of Technology, Academy of Mathematics and Systems Science, CAS and Springer-Verlag GmbH Germany, part of Springer 
Nature 2021

Abstract
The existence of error when compressing nonlinear functions into the coefficients of the characteristic model is known to be 
a key issue in existing characteristic modeling approaches, which is solved in this work by an error-free compression method. 
We first define a key concept of relevant states with corresponding compressing methods into their coefficients, where the 
coefficients are continuous and bounded and the compression is error-free. Then, we give the conditions for decoupling 
characteristic modeling for MIMO systems, and sequentially, we establish characteristic models for nonlinear systems with 
minimum phase and relative order two as well as the flexible spacecrafts, realizing the equivalence in the characteristic model 
theory. Finally, we explicitly explain the reasons for normalization in the characteristic model theory.

Keywords Characteristic modeling · Relevant states · Error-free compression · Flexible spacecraft · Normalization

1 Introduction

The characteristic model theory founded by Academician 
Wu Hongxin in the 1980s [1–3] has already witnessed many 
of its successful stories in the aerospace and industry fields, 
e.g., the reentry lift control of the Shenzhou spacecraft [4–6], 
the rendezvous and docking control of the Shenzhou space-
craft and Tiangong 1 [7, 8], the skip reentry control of the 
Chang’e-5 [9], the electrolytic aluminum control [10], just 
to name a few. The characteristic model theory consists of 
three ingredients, namely, characteristic modeling, param-
eter identification and all-coefficient adaptive control. In the 

characteristic modeling stage, the dynamics of the controlled 
systems is transformed to establish the characteristic model. 
Then, in the parameter identification stage, the projection 
gradient method or the projection least square method are 
used to identify the bounded coefficients, which is key to 
the success of the characteristic model. Finally, the control 
law is designed using the so-called all-coefficient adaptive 
control approach, examples of which include maintenance-
tracking control, golden-section adaptive control, logic inte-
gral control, logic differential control, etc. [4].

As can be understood, characteristic modeling is the first 
step of and key to the characteristic model theory, which has 
been studied extensively in the recent decades. For linear 
systems, the problem has been solved by proving that gen-
eral linear time-invariant systems can be transformed to the 
second-order linear time-varying difference equations with 
bounded coefficients under certain conditions [11, 12]. For 
second-order affine nonlinear systems the second-order char-
acteristic model has also been given by introducing nonlinear 
time scale [13]. The cyclic demonstration problem is solved 
by a state-dependent identification projection region and a 
novel adaptive control method [14, 15]. Also, one assumption 
on characteristic modeling is that the compressed functions 
should be zero for zero system state, since otherwise the mod-
eling errors will be infinity under certain conditions, which 
can be solved by the translation transformation method [16].
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We notice that key to characteristic modeling is the error-
free compression of nonlinear functions into the coefficients 
of a characteristic model, but unfortunately error is always 
present in all existing methods [4]. On the other hand, the rea-
sons of the so-called “normalization” phenomenon need also 
be explained, where the bounds of the output coefficients of 
the characteristic model for different controlled systems, sys-
tems different time scales, linear or nonlinear, are all the same. 
Motived by the above challenges, in the present work, we

– Define a key concept of “relevant states” for nonlinear 
functions, which ensures the equivalence in the compres-
sion process.

– Establish the necessary and sufficient conditions for the 
first time, under which MIMO systems can be transformed 
into a decoupled characteristic model.

– Establish the characteristic models of nonlinear systems 
with minimum phase and relative order two as well as the 
flexible spacecraft, realizing the equivalence in the charac-
teristic model theory.

– Address the normalization problem in the characteristic 
model theory.

In what follows, we first formulate the problem of interest in 
Sect. 2, then present the main results in Sect. 3, and finally 
concludes the paper in Sect. 4.

2  Problem formulation and preliminaries

We first formulate the considered problems with preliminaries 
on characteristic modeling with error-free compression.

2.1  Problem formulation

In [19], it was proved that the dynamics of a flexible spacecraft 
can be transformed into a standard form of input–output lin-
earization with minimum phase and relative order two. With 
this in mind, we may consider the following affine nonlinear 
system:

where x1 ∈ ℝn , x2 ∈ ℝn and � ∈ ℝp are the system states, 
u ∈ ℝn is the system input, f ∈ ℝn , g ∈ ℝn×n and q ∈ ℝp 
are the smooth differential functions, f (0, 0, 0) = 0 and 
q(0, 0, 0) = 0.

For the system in (1), we make the following assumption.

(1)

⎧⎪⎨⎪⎩

ẋ1 = x2,

ẋ2 = f (x1, x2, 𝜂) + g(x1, x2, 𝜂)u,

�̇� = q(x1, x2, 𝜂),

Assumption 1 (a) The system in (1) is a minimum-phase 
system; (b) the derivatives of functions f and q with their 
arguments are bounded; and (c) g is nonsingular.

Remark 1 Assumption 1 is necessary for the global stability 
of the characteristic model based adaptive control. In fact, 
adaptive control can be rewritten as an adaptive PID control 
law with bounded coefficients [4], and Assumption 1 is one 
of the necessary conditions for the global stability of PID 
control in [17].

An advantage of characteristic model theory is that the 
coefficients of the characteristic model have determined 
bounds, ensuring transient stability of the closed-loop sys-
tems. The bounds are determined by adjusting the sampling 
period according to how fast the system dynamics can be. 
This system property can be measured by the eigenvalues 
for linear time-invariant (LTI) systems, and by the following 
time scale introduced in [18] for nonlinear systems.

Definition 1 Define the time scale for the system in (1) as 
follows:

where

for x1 , x2 , and � in bounded closed sets.

The characteristic model is of the form of linear time-
varying difference equations with bounded coefficients, with 
its particular focus on second-order model [4, 11–16], given 
as follows:

where yC and uC are the output and input of the characteristic 
model in (2), with their dimensions being equal to those of 
the controlled system, and a1 , a2 and b are matrices with 
appropriate dimensions. The bounds of the output coeffi-
cients are given by

and the bound of the input coefficient b(k) is given according 
to the specific physical properties of the input matrix of the 
controlled systems. In the above formulas, Tscale is the time 
scale of the controlled systems, and T is the sampling period. 

Tscale = min

�
1√
Mf

,
1√
Mq

,
1√
Mu

�
,

Mf = max ‖f‖, Mq = max ‖q‖, Mu = max ‖gu‖

(2)yC(k + 2) = a1(k)yC(k + 1) + a2(k)yC(k) + b(k)uC(k),

(3)a1(k) = 2I3 + O

(
T

Tscale

)
,

(4)a2(k) = −I3 + O

(
T

Tscale

)
+ O

(
T

Tscale

)2

,



A characteristic modeling method of error-free compression for nonlinear systems  

1 3

When a1 and a2 are diagonal matrices, (2) is said to be the 
decoupled characteristic model.

2.2  Preliminaries

The following lemma gives an important property of the 
time scale.

Lemma 1 Assume that Assumption 1 holds. For the follow-
ing systems,

with time scale Tscale , it is held that

Similarly, for the following high-order system,

it is held that

Proof Let the derivative variable of (5) be t, and transform 
(5) into the system with time scale 1, as follows:

By the time-scale transformation, we see that

where

It follows from Definition 1 that for x1 and x2 in bounded 
closed sets,

which then means that (6) holds. The other case can be 
proved similarly.

(5)
{

ẋ1 = x2,

ẋ2 = f1x1 + f2x2

(6)‖f1‖ = O

�
1

T2
scale

�
, ‖f2‖ = O

�
1

Tscale

�
.

⎧⎪⎨⎪⎩

ẋ1 = x2,

⋮

ẋn−1 = xn,

ẋn = f1x1 + f2x2 +⋯ + fnxn,

‖fi‖ = O

�
1

Tn+1−i
scale

�
.

⎧⎪⎨⎪⎩

dx�
1

dt�
= x�

2
,

dx�
2

dt�
= T2

scale
f1x

�
1
+ Tscalef2x

�
2
.

t� =
t

Tscale
,

x�
1
= x1, x�

2
= Tscalex2.

max ‖T2
scale

f1x
�
1
+ Tscalef2x

�
2
‖ = 1,

Remark 2 When degenerated to linear systems, Lemma 1 
holds as well. It can be known from linear system theory 
that f1 and f2 are the product and sum of eigenvalues, respec-
tively. Eq. (6) holds from the definition of minimum time 
constant of linear system theory. Error-free compression of 
nonlinear functions into the coefficients of state variables 
is key to characteristic modeling. We define the following 
relevant states which is useful in the error-free compression.

Definition 2 For a function h(s1, s2,… , sn) , if

then s1, s2,… , sm are said to be a group of relevant states, 
and s1, s2,… , sm are relevant.

Remark 3 Relevant states exist in general. In fact, all states 
are relevant for a system with zero equilibrium according 
to Definition 2. From nonlinear system theory, the nonzero 
equilibrium can always be transferred to zero.

Remark 4 There may exist multiple groups of relevant states 
for a system. For example, the following function

has three groups of relevant states s1 ; s2 ; s1 and s2 . In this 
present work, we need to find out the group of relevant states 
with the fewest elements to build the characteristic model.

For a function h(s1, s2,… , sn) with all states being relevant, 
define for s1

and for i = 2,… , n,

It is easy to see that [17]

For a function h(s1, s2,… , sn) with relevant states being si , 
i = 1, 2,… ,m , m < n , define for s1

h(0,… , 0, sm+1,… , sn) = 0, m ⩽ n,

even if sm+1,… , sn ≠ 0,

h(s1, s2) = s1s2

(7)h1 =

⎧⎪⎨⎪⎩

h(s1, 0,… , 0)

s1
, s1 ≠ 0,

�h

�s1
(0,… , 0), s1 = 0,

(8)

hi =

⎧
⎪⎨⎪⎩

h(s1,… , si, 0,… , 0) − h(s1,… , si−1, 0,… , 0)

si
, si ≠ 0,

�h

�si
(s1,… , si−1, 0,… , 0), si = 0.

(9)h(s1, s2,… , sn) =
n∑
i=1

hisi.
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and for i = 2,… ,m,

(10)h1 =

⎧
⎪⎨⎪⎩

h(s1, 0,… , 0, sm+1,… , sn)

s1
, s1 ≠ 0,

�h

�s1
(0,… , 0, sm+1,… , sn), s1 = 0,

(14)

x1 =
[
x11, x12,… , x1n

]T
, x2 =

[
x21, x22,… , x2n

]T
,

u =
[
u1, u2,… , un

]T
, f =

[
f1, f2,… , fn

]T
,

g =
[
gT
1
, gT

2
,… , gT

n

]T
,

It is then easy to see that

The above results are summarized in the following lemma.

Lemma 2 Consider a function h(s1, s2,… , sn) with bounded 
�h

�si
 , i = 1,… , n . If and only if the relevant states of h are si , 

i = 1,… ,m , m ⩽ n , h can be compressed into the coefficients 
of the relevant states si without error, as shown in (9) where 
the coefficients are shown in (7) and (8) for m = n , and in 
(12) with the coefficients (10) and (11) for m < n . Further-
more, the coefficients hi , i = 1, 2,… ,m , are continuously 
bounded.

3  Main results

This section investigates the characteristic modeling prob-
lem with error-free compression for the nonlinear systems 
(1) and flexible spacecraft, and the normalization phenom-
ena in the characteristic model theory. The characteristic 
modeling problem for the external dynamics of (1) is first 
considered.

3.1  Characteristic modeling for second‑order affine 
nonlinear systems

Consider the external dynamics of (1),

Let

(11)
h
i
=

⎧
⎪⎨⎪⎩

h(s1,… , s
i
, 0,… , 0, s

m+1,… , s
n
) − h(s1,… , s

i−1, 0,… , 0, s
m+1,… , s

n
)

s
i

, s
i
≠ 0,

�h

�s
i

(s1,… , s
i−1, 0,… , 0, s

m+1,… , s
n
), s

i
= 0.

(12)h(s1, s2,… , sn) =
m∑
i=1

hisi.

(13)

⎧⎪⎨⎪⎩

ẋ1 = x2,

ẋ2 = f (x1, x2) + g(x1, x2)u,

y = x1.

where x1i ∈ ℝ , x2i ∈ ℝ , ui ∈ ℝ , fi ∈ ℝ , gi ∈ ℝ1×n , 
i = 1, 2,… , n . By Definition 1, f (0, 0) = 0 means there exist 
relevant states for fi , i = 1, 2,… , n , which can be expressed 
as

where kj and lj belong to the set {1, 2,… , n} , j = 1, 2,… , i . 
By Lemma 2, designing the continuous bounded coefficients 
with respect to the relevant states (15) yields

and

From (13) and (17), it is easy to obtain

Rewriting (18) in its matrix form and then taking Euclidean 
discretization yields

where a1(k) ∈ ℝn×n and a2(k) ∈ ℝn×n satisfy (3) and (4) by 
Lemma 1, and

It is easy to see that by further taking the output of the char-
acteristic model as yC = x1 , (19) has the form of the charac-
teristic model in (2), i.e., we have established the character-
istic model (2) for (13).

We proceed to consider the problem of decoupling charac-
teristic modeling, which diminishes the number of coefficient 
identification, hence simplifying the control design.

Lemma 2 implies that if fi , i = 1 , 2, … , n, satisfy the fol-
lowing conditions:

(15)x1k1 , x1k2 ,… , x1ki , x2l1 , x2l2 ,… , x2li ,

(16)f i
1k1

, f i
1k2

,… , f i
1ki
, f i
2l1
, f i
2l2
,… , f i

2li

(17)fi(x1, x2) =
i∑

j=1

�
f i
1kj
x1kj + f i

2lj
x2lj

�
.

(18)ẍ1i =
i∑

j=1

�
f i
1kj
x1kj + f i

2lj
x2lj

�
+ gi(x1, x2)u.

(19)x1(k + 2) = a1(k)x1(k + 1) + a2(k)x1(k) + b(k)u(k),

(20)b(k) = T2g(x1, x2).
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then by designing the continuously bounded coefficients f i
1i

 
and f i

2i
 , we obtain

By (13), we have

Rewriting (23) in its matrix form and then taking Euclidean 
discretization yields

Apparently, a1(k) and a2(k) are diagonal, which means that 
(24) is decoupled. It is easy to see that by further taking the 
output and input of the characteristic model as yC = x1 and 
uC = u , (23) has the form of the characteristic model (2); that 
is, we have established the decoupled characteristic model 
(2) for (13), where a1(k) ∈ ℝn×n and a2(k) ∈ ℝn×n are diago-
nal matrices and satisfy (3) and (4), and b(k) is with the form 
of (20). Eq. (21) is necessary and sufficient for establishing 
the decoupled characteristic model, which is said to be the 
decoupling condition of characteristic model.

We summarize the above derivations into the following 
two theorems.

Theorem 1 If the nonlinear system in (13) satisfies Assump-
tion 1, then there exist relevant states for the nonlinear func-
tion f in (13), and f can be compressed into the coefficients of 
the relevant states without error with continuously bounded 
coefficients (16), as shown in (17). Furthermore, (13) can be 
transformed into the second-order characteristic model (2) 
with the coefficients satisfying (3), (4), and (20).

Theorem 2 If the nonlinear system in (13) satisfies Assump-
tion 1 and the decoupling condition (21), then for i = 1 , 2, 
… , n, fi only has two relevant states, x1i and x2i , and f can be 
compressed into the coefficients of the relevant states without 
error with continuously bounded coefficients, as shown in 
(22). Furthermore, (13) can be transformed into the second-
order decoupled characteristic model (2) with the coeffi-
cients satisfying (3), (4), and (20), and a1 and a2 diagonal.

Remark 5 The decoupling conditions (21) for establishing 
the decoupled characteristic model are given for the first 
time in this work.

Remark 6 Equations (17) and (22) show that the compres-
sion is error-free, ensuring the equivalence in the character-
istic model theory.

(21)
fi(x1k1 ,… , x1i−1, 0, x1i+1,… , x1ki ,

x2l1 ,… , x2i−1, 0, x2i+1,… , x2li ) = 0,

even if x1j ≠ 0, x2j ≠ 0, j ≠ i, i, j = 1, 2,… , n,

(22)fi = f i
1i
x1i + f i

2i
x2i.

(23)ẍ1i = f i
1i
x1i + f i

2i
x2i + gi(x1, x2)u.

(24)x1(k + 2) = a1(k)x1(k + 1) + a2(k)x1(k) + b(k)u(k).

3.2  Characteristic modeling for the nonlinear 
systems in (1)

This section gives a characteristic modeling method with 
error-free compression for the higher-order nonlinear sys-
tems in (1), realizing the equivalence in the characteristic 
model theory.

Similar to (14), let

where qi ∈ ℝ , �i ∈ ℝ , i = 1 , 2, … , p. In the following, we 
establish the characteristic model of (1). First, compress the 
nonlinear function f and q of (1) into the coefficients of the 
relevant states. Similar to the deduction procedure in Sec-
tion 3.1, for f, there exist relevant states,

Designing the continuous bounded coefficients as follows:

yields

For q, there exist relevant states:

Future designing the continuous bounded coefficients,

and hence

Therefore, (1) can be rewritten in matrix form by substitut-
ing (25) and (26) into it,

where F1 , F2 , F� , Q1 , Q2 , and Q� are matrices with appropri-
ate dimensions. We can see that the nonlinear functions f and 
q in (1) are compressed into the coefficients of the relevant 
states without error by comparing (1) and (27).

We further deal with the internal states � as follows. By 
matrix theory, we can find the general solution of � from the 
second equation of (27),

q =
[
q1, q2,… , qp

]T
, � =

[
�1, �2,… , �p

]T
,

x1k1 , x1k2 ,… , x1ki , x2l1 , x2l2 ,… , x2li , �r1 , �r2 ,… , �ri .

f i
1k1

, f i
1k2

,… , f i
1ki
, f i
2l1
, f i
2l2
,… , f i

2li
, f i
r1
, f i
r2
,… , f i

ri

(25)fi(x1, x2, �) =
i∑

j=1

�
f i
1kj
x1kj + f i

2lj
x2lj + f i

rj
�rj

�
.

x1s1 , x1s2 ,… , x1si , x2v1 , x2v2 ,… , x2vi , �w1
, �w2

,… , �wi
.

qi
1s1
, qi

1s2
,… , qi

1si
, qi

2v1
, qi

2v2
,… , qi

2vi
, qi

w1
, qi

w2
,… , qi

wi
,

(26)qi(x1, x2, �) =
i∑

j=1

�
qi
1sj
x1sj + qi

2vj
x2vj + qi

wj
�wj

�
.

(27)

⎧⎪⎨⎪⎩

ẋ1 = x2,

ẋ2 = F1x1 + F2x2 + F𝜂𝜂 + gu,

�̇� = Q1x1 + Q2x2 + Q𝜂𝜂,



 B. Meng et al.

1 3

where f�1 , f�2 , f�3 , and fu are the matrices with appropri-
ate dimensions. Differentiating the second equation of (27) 
yields

Substituting the third equation of (27) into (29) cancels �̇� , 
and then substituting (28) into the resultant equation cancels 
� . This results in the third-order differential equation of x1 
with the cancellation of the internal states � and �̇�,

where

It follows from Lemma 1 that

Taking Euler discretization to (30), the third-order charac-
teristic model can be established by further taking yC = x1 
and uC = u,

where

(28)𝜂 = f𝜂3ẍ1 + f𝜂2ẋ1 + f𝜂1x1 + fuu,

(29)
ẍ2 = F2ẍ1 + (F1 + Ḟ2)ẋ1 + Ḟ1x1 + Ḟ𝜂𝜂 + F𝜂�̇� + ġu + gu̇.

(30)
x⃛1 = A3ẍ1 + A2ẋ1 + A1x1 + gu̇ + (ġ + (Ḟ𝜂 + F𝜂Q𝜂)fu)u,

A3 = F2 + Ḟ2 + (Ḟ𝜂 + F𝜂Q𝜂)f𝜂3,

A2 = F1 + Ḟ2 + F𝜂Q2 + (Ḟ𝜂 + F𝜂Q𝜂)f𝜂2,

A1 = Ḟ1 + F𝜂Q1 + (Ḟ𝜂 + F𝜂Q𝜂)f𝜂1.

‖A3‖ = O

�
1

Tscale

�
,

‖A2‖ = O

�
1

T2
scale

�
,

‖A1‖ = O

�
1

T3
scale

�
.

(31)

yC(k + 3) = a1(k)yC(k + 2) + a2(k)yC(k + 1)

+a3(k)yC(k) + b1(k)uC(k + 1) + b0(k)uC(k),

(32)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

a1(k) = 3I3 + O

�
T

Tscale

�
,

a2(k) = −3I3 + O

�
T

Tscale

�
+ O

�
T

Tscale

�2

,

a3(k) = I3 + O

�
T

Tscale

�
+ O

�
T

Tscale

�2

+ O

�
T

Tscale

�3

,

(33)

{
b1(k) = T2g(x1, x2, u),

b0(k) = T3
(
ġ + (Ḟ𝜂 + F𝜂Q𝜂)fu

)
− T2g(x1, x2, u).

In characteristic model theory, the second-order one is of 
special significance since the intelligent adaptive control 
methods based on it have derived successful and widely 
applications [4]. Therefore, we further establish the second-
order characteristic model for (1) by introducing the online 
estimation methods. It follows from the first and second 
equations in (27) that

By designing online estimators, for example, the extended 
state observer (ESO), to estimate the internal states F�� , and 
denoting the estimated states as �̄� , (34) can be represented 
as follows:

where

Furthermore, by taking Euler discretization to (35), the sec-
ond-order characteristic model (2) can be established where 
yC = x1 , uC = ū , and

We summarize the above deductions into the following 
theorem.

Theorem 3 If the nonlinear systems in (1) satisfy Assumption 
1, then (1) can be transformed into the third-order charac-
teristic model in (31) with the coefficients satisfying (32) and 
(33); furthermore, if the internal states are estimated and the 
intermediate control ū is designed as in (36), then (1) can 
be transformed into the second-order characteristic model 
(2) with the input uC = ū , and the coefficients satisfying (3), 
(4), and (37).

3.3  Characteristic modeling for flexible spacecraft

This section proposes the characteristic modeling method 
with error-free compression for flexible spacecraft, real-
izing the equivalence in the characteristic model theory.

Consider the following flexible spacecraft attitude 
dynamics (1-3-2 Euler rotation sequence),

where

(34)ẍ1 = F1x1 + F2ẋ1 + F𝜂𝜂 + gu.

(35)ẍ1 = F1x1 + F2ẋ1 + ū,

(36)ū = gu + �̄�.

(37)b(k) = T2.

(38)

⎧⎪⎪⎨⎪⎪⎩

ẋ1 = C(x1)ws,

Isẇs + w̃sIsws + FsL�̈�L + FsR�̈�R = Ts,

�̈�L + 2𝜉LwL�̇�L + w2
L
𝜂L + FT

sL
ẇs = 0,

�̈�R + 2𝜉RwR�̇�R + w2
R
𝜂R + FT

sR
ẇs = 0,
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� , � , � are the roll, the pitch, and the yaw attitudes; wx , 
wy , wz are the roll, the pitch and the yaw angular velocities, 
respectively;

is the transformation matrix;

represents the cross-product operator matrix; Is is the inertia 
matrix of spacecraft, Ts is the external torque vector acting 
on the spacecraft; and �L ∈ ℝl and �R ∈ ℝl are the mode 
coordinate matrices, 𝜉L > 0 and 𝜉R > 0 are the mode damp-
ing coefficients, wL > 0 and wR > 0 are the mode frequen-
cies, FsL ∈ ℝ3×l and FsR ∈ ℝ3×l are the coupled matrices 
between flexible and rigid bodies with the subscript L and R 
being the left and right solar array, respectively.

Here, we consider the case where 0 ⩽ 𝜓 < 90◦ (for 
� ⩾ 90◦ , the spacecraft model in terms of quaternion param-
eterization is needed). Through simple computation, C(x1) 
is nonsingular for 0 ⩽ 𝜓 < 90◦ . Let the main body inertial 
matrix be

where

Assumption 2 Rs is nonsingular.

The following properties are given in [19].

Lemma 3 The relative order of the flexible spacecraft 
dynamics (38) is (2, 2, 2), and its zero dynamics are expo-
nentially stable.

Using differential homeomorphic transformation, (38) is 
transformed into the following input-output linearization form,

x1 =[� � �]T;

ws =
[
wx wy wz

]T
;

C(x1) =

⎡
⎢⎢⎢⎣

cos �

cos�
0

sin �

cos�
tan� cos � 1 tan� sin �

− sin � 0 cos �

⎤
⎥⎥⎥⎦

w̃s =

⎡
⎢⎢⎣

0 −wz wy

wz 0 −wx

−wy wx 0

⎤
⎥⎥⎦

Rs = Is − FFT,

F =
[
FsL,FsR

]
.

(39)

⎧⎪⎨⎪⎩

ż1 = z2,

ż2 = a2(z1, z2)z2 + a(z)𝜂 + b(z1)Ts,

�̇� = A𝜂𝜂 + B𝜂z2,

where

By comparison, we can see that (39) is already in the form 
of (27), meaning that it is not necessary to compress the 
nonlinear functions for the flexible spacecraft (38), which 
consequently means that Assumption 1 is unnecessary. From 
Theorem 3, we can obtain the characteristic modeling results 
directly.

Proposition 1 If the flexible spacecraft in (38) satisfies 
Assumption 2, then (38) can be transformed into the third-
order characteristic model in (31) with the coefficients 
satisfying (32) and (33); furthermore, if the internal states 
a(z)� are estimated as �̄� and the intermediate control Ts is 
designed as follows:

then (38) can be transformed into the second-order charac-
teristic model (2) with the input uC = Ts , and the coefficients 
satisfying (3), (4), and (37).

3.4  Normalization essence

This section provides insights on “normalization” in the 
characteristic model theory through both linear and nonlin-
ear systems. “normalization” means that the bounds of the 
output coefficients of the characteristic model for different 
controlled systems, systems different time scales, linear or 
nonlinear, are all the same.

z1 = x1,

z2 = C(x1)ws,

𝜂 =
�
𝜂T
L
,wT

s
FsL + �̇�T

L
, 𝜂T

R
,wT

s
FsR + �̇�T

R

�T
,

a1(z1, z2) =
𝜕C

𝜕z1
((C(z1)

−1z2)⊗ I3×3)

−b(z1)(2𝜉LwLFsLF
T
sL
+ 2𝜉RwRFsRF

T
sR
)C(z1)

−1,

a2(z1, z2) = a1(z1, z2) − b(z1)w̃sIsC(z1)
−1,

b(z1) = C(z1)R
−1
s
,

a(z) = C(z1)R
−1
s

�
w2
L
FsL, 2𝜉LwLFsL,w

2
R
FsR, 2𝜉RwRFsR

�
,

A𝜂 =

⎡
⎢⎢⎢⎣

0 Il×l 0 0

−w2
L
Il×l −2𝜉LwLIl×l 0 0

0 0 0 Il×l
0 0 −w2

R
Il×l −2𝜉RwRIl×l

⎤
⎥⎥⎥⎦
,

B𝜂 =
�
−FsL, 2𝜉LwLFsL,−FsR, 2𝜉RwRFsR

�T
C(z1)

−1.

Ts = b(z1)Ts + �̄�,
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3.4.1  LTI systems

Consider the following controlled systems with different 
poles:

where 𝜆i < 0 and ki are real numbers for i = 1, 2,… , n . It 
follows from computer control theory that the pulse transfer 
function for (40) is

where

and G(0) is the static gain.
In the characteristic model theory, the static gain can 

be transformed to 1 through the input-output transforma-
tion  [20, 21]. Thus, without loss of generality, we may 
assume G(0) = 1 . Inspection of (41) and (42) shows that for 
different systems, only the eigenvalue �i and the sampling 
period T are different, but they all appear in the form of 
multiplication with same orders. Defining the minimum time 
constant [4],

results in

In the characteristic model theory, we generally choose the 
sampling period T according to Tscale [4],

(40)G(s) =
n∑
i=1

ki

s − � i
,

H(z) =
b0 + b1z

−1 +⋯ + bnz
−n

1 + a1z
−1 +⋯ + anz

−n
,

(41)

⎧⎪⎪⎨⎪⎪⎩

a1 = −
n∑
i=1

exp(�iT),

⋮

an = (−1)n exp(
n∑
i=1

�iT),

(42)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

b0 = G(0)
n∑
i=1

�
1 − exp(�iT)

�
,

⋮

bn = G(0)
n∑
i=1

�
(−1)n exp(

n∑
j=1

�jT)

+(−1)n−1 exp(�iT) exp(
n∑

j=1,j≠i

�jT)
�

Tscale =
1

maxi(−�i)

(43)|�i|T ⩽
T

Tscale
, i = 1, 2,… , n.

Using (43) and (44), we can obtain the same bounds for all 
coefficients in (41) and (42) for linear different systems (40), 
which implies the realization of the normalization for the 
linear system in (40).

3.4.2  Nonlinear systems

The reasons for the normalization for the nonlinear system 
in (1) can be seen from (3), (4), and (32). By choosing 
the sampling period according to (44), the bounds of the 
coefficients of the characteristic model in (2) and (31) for 
different controlled systems are equal, which implies the 
realization of normalization for the nonlinear systems in 
(1).

In summary, the essence of the characteristic model 
theory is to choose the sampling period according to the 
change pace of controlled systems, and further taking 
advantage of the structural features of the characteristic 
model to realize the normalization. For both linear and 
nonlinear systems, the output coefficient bounds of their 
same-order characteristic model are the same.

4  Conclusion

The characteristic modeling problem with error-free com-
pression for nonlinear systems is investigated. A key con-
cept of the relevant states is defined with its corresponding 
compression method, where the coefficients are continuous 
and bounded and the compression is error-free. The con-
ditions given for decoupling characteristic modeling for 
MIMO systems provide bases, based on which the estab-
lishment of the characteristic models for the nonlinear sys-
tems with minimum phase and relative order two and the 
flexible spacecraft realizes the equivalence in the charac-
teristic model theory. Lastly, reasons for normalization in 
the characteristic model theory are given. The work con-
tributes fundamentally to the characteristic model theory.
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